login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Product prime(1+((n-1) mod (p-1))), where p ranges over distinct prime divisors of n.
2

%I #9 Dec 10 2023 17:53:25

%S 1,2,2,2,2,6,2,2,2,6,2,6,2,6,10,2,2,6,2,14,10,6,2,6,2,6,2,14,2,18,2,2,

%T 10,6,55,6,2,6,10,14,2,78,2,14,4,6,2,6,2,6,10,14,2,6,55,6,10,6,2,42,2,

%U 6,10,2,22,78,2,14,10,42,2,6,2,6,10,14,187,78,2,14,2,6,2,78,22,6,10,38,2,18,34,14,10,6,55,6,2,6,46,14,2,78,2,38,20

%N Product prime(1+((n-1) mod (p-1))), where p ranges over distinct prime divisors of n.

%C a(n) is a power of 2 if and only if n is a term of A087441.

%H Antti Karttunen, <a href="/A324291/b324291.txt">Table of n, a(n) for n = 1..16384</a>

%F a(n) = Product_{p|n, p prime} A000040(1+((n-1) mod (p-1))).

%F A001222(a(n)) = A001221(n).

%o (PARI) A324291(n) = if(1==n, 1, my(f=factor(n), m=1); for(i=1, #f[, 1], m *= prime(1+((n-1)%(f[i, 1]-1)))); (m));

%Y Cf. A000040, A087441, A324290, A324292 (rgs-transform).

%K nonn

%O 1,2

%A _Antti Karttunen_, Feb 23 2019