login
a(n) = A002487(A048675(n)).
3

%I #9 Feb 24 2019 01:58:50

%S 0,1,1,1,1,2,1,2,1,3,1,1,1,4,2,1,1,3,1,2,3,5,1,3,1,6,2,3,1,3,1,3,4,7,

%T 2,2,1,8,5,3,1,5,1,4,1,9,1,2,1,4,6,5,1,3,3,5,7,10,1,1,1,11,2,2,4,7,1,

%U 6,8,5,1,3,1,12,3,7,2,9,1,1,1,13,1,2,5,14,9,7,1,4,3,8,10,15,6,3,1,5,3,3,1,11,1,9,3

%N a(n) = A002487(A048675(n)).

%C Like A323902 and A323903, this also has quite a moderate growth rate, even though some terms of A048675 soon grow quite big.

%H Antti Karttunen, <a href="/A324286/b324286.txt">Table of n, a(n) for n = 1..65537</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/St#Stern">Index entries for sequences related to Stern's sequences</a>

%F a(n) = A002487(A048675(n)) = A002487(A322821(n)).

%F a(A283477(n)) = A324287(n).

%o (PARI)

%o A002487(n) = { my(s=sign(n), a=1, b=0); n = abs(n); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (s*b); };

%o A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; }; \\ From A048675

%o A324286(n) = A002487(A048675(n));

%Y Cf. A002487, A048675, A283477, A322821, A323902, A323903, A324287.

%K nonn

%O 1,6

%A _Antti Karttunen_, Feb 22 2019