OFFSET
0,1
COMMENTS
x = a(n) and y = A324269(n) satisfy the Lebesgue-Ramanujan-Nagell equation x^2 + 11^(10*n+1) = 4*y^5 (see Theorem 2.1 in Chakraborty, Hoque and Sharma).
LINKS
K. Chakraborty, A. Hoque, R. Sharma, Complete solutions of certain Lebesgue-Ramanujan-Nagell type equations, arXiv:1812.11874 [math.NT], 2018.
Index entries for linear recurrences with constant coefficients, signature (161051).
FORMULA
O.g.f.: 31/(1 - 161051*x).
E.g.f.: 31*exp(161051*x).
a(n) = 161051*a(n-1) for n > 0.
a(n) = 31*161051^n.
a(n) = 31*A001020(n)^5.
EXAMPLE
For a(0) = 31 and A324269(0) = 3, 31^2 + 11 = 972 = 4*3^5.
MAPLE
a:=n->31*161051^n: seq(a(n), n=0..20);
MATHEMATICA
31 161051^Range[0, 20]
PROG
(GAP) List([0..20], n->31*161051^n);
(Magma) [31*161052^n: n in [0..20]];
(PARI) a(n) = 31*161051^n;
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Feb 26 2019
STATUS
approved