login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324266 a(n) = 2*49^n. 3
2, 98, 4802, 235298, 11529602, 564950498, 27682574402, 1356446145698, 66465861139202, 3256827195820898, 159584532595224002, 7819642097165976098, 383162462761132828802, 18774960675295508611298, 919973073089479921953602, 45078680581384516175726498, 2208855348487841292610598402 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

x = A324265(n) and y = a(n) satisfy the Lebesgue-Ramanujan-Nagell equation x^2 + 7^(6*n+1) = 4*y^3 (see Theorem 2.1 in Chakraborty, Hoque and Sharma).

LINKS

Table of n, a(n) for n=0..16.

K. Chakraborty, A. Hoque, R. Sharma, Complete solutions of certain Lebesgue-Ramanujan-Nagell type equations, arXiv:1812.11874 [math.NT], 2018.

FORMULA

O.g.f.: 2/(1 - 49*x).

E.g.f.: 2*exp(49*x).

a(n) = 49*a(n-1) for n > 0.

a(n) = (49/2)*(A109808(n))^2.

EXAMPLE

For A324265(0) = 5 and a(0) = 2, 5^2 + 7 = 32 = 4*2^3.

MAPLE

a:=n->2*49^n: seq(a(n), n=0..20);

MATHEMATICA

2*49^Range[0, 20]

PROG

(GAP) List([0..20], n->2*49^n);

(MAGMA) [2*49^n: n in [0..20]];

(PARI) a(n) = 2*49^n;

CROSSREFS

Cf. A324265 (5*343^n), A000290 (n^2), A000578 (n^3), A109808 (2*7^(n-1)).

Sequence in context: A316949 A317729 A223038 * A258399 A212838 A024241

Adjacent sequences:  A324263 A324264 A324265 * A324267 A324268 A324269

KEYWORD

nonn,easy

AUTHOR

Stefano Spezia, Feb 20 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 22:02 EST 2019. Contains 330012 sequences. (Running on oeis4.)