login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324250 Sequence a(n) = 3*A002559(n) - 2 determining the principal reduced indefinite binary quadratic form [1, a(n), -a(n)] for Markoff triples. 0
1, 4, 13, 37, 85, 100, 265, 505, 580, 697, 1297, 1828, 2953, 3973, 4789, 8689, 12541, 17221, 19396, 22681, 27229, 32836, 44101, 85969, 100381, 112996, 129781, 154921, 186628, 225073, 289669, 405409, 585073, 589252, 884053, 1279165, 1498177, 1542685, 1938052, 2777293, 3410065, 3836452, 4038805 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

The indefinite binary quadratic form F(n,x,y) = x^2 - 3*m(n)*x*y + y^2 = [1, -3*m(n), 1] representing -m(n)^2 with m(n) = A002559(n), determines Markoff triples MT(n) = (x(n) = A305313(n), y(n) = A305314(n), m(n)) with x(n) < y(n) < m(n), for n >= 3. For n = 1 and 2: x(n) = y(n) = 1. The Frobenius-Markoff conjecture is that this solution is unique. This form F(n,x,y) has discriminant D(n) = (3*m(n))^2 - 4 = a(n)*(a(n) + 4) = A305312(n) > 0.

Because -3*m(n) < 0  this form F(n,x,y) is not reduced (see e.g., the Buell reference, or the W. Lang link in A225953 for the definition).

The principal reduced form for F(n,x,y) is prF(n,X,Y) = X^2 + a(n)*X*Y - a(n)*Y^2  = [1, a(n), -a(n)]. (See, e.g., Lemma 2 of the W. Lang link in A225953 where  b = a(n), f(D(n)) = ceiling(sqrt(D(n))) = 3*m(n), and D(n) and f(D(n)) have the same parity.) The relation between these forms is F(n,Y,Y-X) = prF(n,X,Y) with Y > 0, Y-X > 0, and X <= 0 (for n >= 3, X < 0).

REFERENCES

D. A. Buell, Binary quadratic forms, 1989, Springer, p. 21.

LINKS

Table of n, a(n) for n=1..43.

FORMULA

a(n) = 3*A002559(n) - 2, for n >= 1.

EXAMPLE

n = 3 with a(3) = 13: MT(3) = (1, 2, 5), F(3,x,y) = [1, -3*5, 1], prF(3,X,Y) = [1, 13, -13]. prF(3,X,Y) = -5^2 has two proper fundamental solutions with Y > 0, namely (-1, 1) and (1, 2). The unique solution with Y > 0, X < 0, and Y-X < 5 is (X, Y) = (-1, 1) corresponding to (x,y) = (1, 2) for MT(3).

The other fundamental solution (1, 2) corresponds to the unordered Markoff triple (2, 1, 5) (x > y, X > 0). The next solution in this class with X < 0 is (-12, 1) corresponding to the unordered triple (1, 13, 5) (Y-X = 13 > 5).

CROSSREFS

Cf. A002559, A305312, A305313, A305314.

Sequence in context: A103082 A279111 A299111 * A226866 A048474 A054761

Adjacent sequences:  A324240 A324248 A324249 * A324251 A324252 A324255

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Mar 04 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 27 02:54 EDT 2019. Contains 323597 sequences. (Running on oeis4.)