login
A324111
Numbers n for which A324108(n) = A324054(n-1) and which are neither prime powers nor of the form 2^i * p^j, where p is an odd prime, with either exponent i or j > 0.
7
1, 87, 174, 348, 696, 1392, 2091, 2784, 4182, 5568, 8364, 11136, 16683, 16728, 22272, 33215, 33366, 33456, 44544, 66430, 66732, 66912, 89088, 132860, 133464, 133824, 178176, 265720, 266928, 267179, 267648, 356352, 531440, 533856, 534358, 535296, 712704, 1062880, 1066877, 1067712, 1068716, 1070592, 1319235, 1425408
OFFSET
1,2
COMMENTS
Setwise difference of A324109 and A070776.
Setwise difference of A070537 and A324110.
If an odd number n > 1 is present, then all 2^k * n are present also. Odd terms > 1 are given in A324112.
LINKS
EXAMPLE
87 is a term, as 87 = 3*29, A324054(3-1) = 4, A324054(29-1) = 156, and A324108(87) = 4*156 = 624 = A324054(87-1).
PROG
(PARI)
A000265(n) = (n/2^valuation(n, 2));
A324054(n) = { my(p=2, mp=p*p, m=1); while(n, if(!(n%2), p=nextprime(1+p); mp = p*p, if(3==(n%4), mp *= p, m *= (mp-1)/(p-1))); n>>=1); (m); };
A324108(n) = { my(f=factor(n)); prod(i=1, #f~, A324054((f[i, 1]^f[i, 2])-1)); };
isA324111(n) = ((1!=omega(n))&&(1!=omega(A000265(n)))&&(A324054(n-1)==A324108(n)));
for(n=1, 2^20, if(isA324111(n), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 15 2019
STATUS
approved