OFFSET
0,1
COMMENTS
One of the two square roots of A322088, where an A-number represents a 13-adic number. The other square root is A324087.
For k not divisible by 13, k is a fourth power in 13-adic field if and only if k == 1, 3, 9 (mod 13). If k is a fourth power in 13-adic field, then k has exactly 4 fourth-power roots.
LINKS
Wikipedia, p-adic number
FORMULA
EXAMPLE
The unique number k in [1, 13^3] and congruent to 3 modulo 13 such that k^4 - 3 is divisible by 13^3 is k = 575 = (353)_13, so the first three terms are 3, 5 and 3.
PROG
(PARI) a(n) = lift(sqrtn(3+O(13^(n+1)), 4))\13^n
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jianing Song, Sep 01 2019
STATUS
approved