login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324082 One of the four successive approximations up to 13^n for 13-adic integer 3^(1/4).This is the 3 (mod 13) case (except for n = 0). 13
0, 3, 68, 575, 13757, 156562, 4612078, 52880168, 178377202, 9967145854, 137221138330, 1240089073122, 22746013801566, 279024950148857, 2399150696294628, 2399150696294628, 104770936724476142, 3431853982640375347, 98586429095835092610, 1335595905567366417029 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

For n > 0, a(n) is the unique number k in [1, 13^n] and congruent to 3 mod 13 such that k^4 - 3 is divisible by 13^n.

For k not divisible by 13, k is a fourth power in 13-adic field if and only if k == 1, 3, 9 (mod 13). If k is a fourth power in 13-adic field, then k has exactly 4 fourth-power roots.

LINKS

Table of n, a(n) for n=0..19.

Wikipedia, p-adic number

FORMULA

a(n) = A324077(n)*A286841(n) mod 13^n = A324084(n)*A286840(n) mod 13^n.

For n > 0, a(n) = 13^n - A324083(n).

a(n)^2 == A322086(n) (mod 13^n).

EXAMPLE

The unique number k in [1, 13^2] and congruent to 3 modulo 13 such that k^4 - 3 is divisible by 13^2 is k = 68, so a(2) = 68.

The unique number k in [1, 13^3] and congruent to 3 modulo 13 such that k^4 - 3 is divisible by 13^3 is k = 575, so a(3) = 575.

PROG

(PARI) a(n) = lift(sqrtn(3+O(13^n), 4))

CROSSREFS

Cf. A286840, A286841, A322085, A324077, A324083, A324084, A324085, A324086, A324087, A324153.

Sequence in context: A079320 A283882 A073163 * A279491 A264700 A124181

Adjacent sequences:  A324079 A324080 A324081 * A324083 A324084 A324085

KEYWORD

nonn

AUTHOR

Jianing Song, Sep 01 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 14 18:25 EDT 2021. Contains 342951 sequences. (Running on oeis4.)