login
A324026
Digits of one of the two 5-adic integers sqrt(6) that is related to A324024.
9
4, 1, 4, 0, 2, 3, 2, 1, 3, 1, 1, 4, 1, 1, 2, 1, 2, 2, 2, 0, 1, 1, 3, 0, 4, 3, 2, 4, 4, 4, 1, 1, 3, 0, 3, 4, 3, 2, 0, 3, 0, 3, 3, 4, 2, 0, 0, 1, 4, 2, 1, 0, 3, 3, 0, 1, 0, 2, 0, 2, 3, 3, 2, 0, 0, 1, 2, 1, 3, 3, 4, 3, 0, 2, 1, 0, 0, 0, 0, 4, 1, 1, 3, 2, 1, 2, 1, 3
OFFSET
0,1
COMMENTS
This square root of 6 in the 5-adic field ends with digit 4. The other, A324025, ends with digit 1.
FORMULA
a(n) = (A324024(n+1) - A324024(n))/5^n.
For n > 0, a(n) = 4 - A324025(n).
Equals A210850*A324029 = A210851*A324030, where each A-number represents a 5-adic number.
EXAMPLE
The solution to x^2 == 6 (mod 5^4) such that x == 4 (mod 5) is x == 109 (mod 5^4), and 109 is written as 414 in quinary, so the first four terms are 4, 1, 4 and 0.
PROG
(PARI) a(n) = truncate(-sqrt(6+O(5^(n+1))))\5^n
CROSSREFS
Digits of 5-adic square roots:
A324029, A324030 (sqrt(-6));
A269591, A269592 (sqrt(-4));
A210850, A210851 (sqrt(-1));
A324025, this sequence (sqrt(6)).
Sequence in context: A298568 A152890 A143354 * A171539 A106141 A082999
KEYWORD
nonn,base
AUTHOR
Jianing Song, Sep 07 2019
STATUS
approved