OFFSET
1,1
COMMENTS
Start of Array, the decimal expansion of Sum_{k>=1} 1/Product of the k consecutive Fibonacci numbers.
k A_xxxxx Expansion
1 A079586 3.3598856662431775531720113029189271796889051337319684864955538153251
2 A290565 1.7738775832851323438023627656769659228307232393594341108392290498649
3 A324007 0.7108553514293284168876944903842708330451180484103086399749735149369
4 0.2049150281252628794885329140859047056992270504855928446613784432368
5 0.0378540002823260756631035758318263246518410219564654534474085675610
6 0.0045033916811269635259578369635768898174496948588364334148979517071
7 0.0003362411268453457928115656517725694972839133469989715601437444837
8 0.0000157197618585596646075219438686990100758465336322798458353726393
9 A322711 0.0000004571522762064818372598445572889518549113726012557938158960751
...
---------------------------------------------------------------------
Total 6.0922434474344421121173873763040413146275243072847552367885514290335
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..1000
EXAMPLE
6.0922434474344421121173873763040413146275243072847552367885514290335796552...
MATHEMATICA
f[n_] := Sum[ N[ 1/Product[ Fibonacci@j, {j, k, k +n -1}], 110], {k, 525}]; Sum[ f[n], {n, 35}]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Robert G. Wilson v, Feb 11 2019
STATUS
approved