%I #18 Feb 26 2019 05:03:00
%S 0,0,0,1,10,125,2275,64673,3102204,272277040,46202044900,
%T 15442093276764,10171924771814520,13188852179018387144,
%U 33674263441006260931040,169522275849148918884400912,1685048703908907788901122512512,33116110237646373502366665503208064,1288337109916947580133035603563656989952,99320901948403913391024993536094346775110656
%N Number of labeled graphs on n nodes with four connected components.
%D F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973, section 1.2.
%H Marko Riedel et al., <a href="https://math.stackexchange.com/questions/3094635/">Proof of recurrence relation.</a>
%H Marko Riedel, <a href="/A323877/a323877.maple.txt">Maple implementation of memoized recurrence.</a>
%F a(n) = A143543(n+1, 4) for n >= 1 and a(0) = 0.
%F E.g.f.: log(Sum_{q>=0} 2^binomial(q, 2)*z^q/q!)^4/4!.
%Y Cf. A143543, A323875, A323876.
%K nonn
%O 1,5
%A _Marko Riedel_, Feb 05 2019