%I
%S 0,1,1,1,0,1,2,3,3,2,5,3,0,3,5,16,21,24,24,21,16,61,45,24,0,
%T 24,45,61,272,333,378,402,402,378,333,272,1385,1113,780,
%U 402,0,402,780,1113,1385,7936,9321,10434,11214,11616,11616,11214,10434,9321,7936
%N A Seidel matrix a(n,k) read by antidiagonals upwards.
%C The first row is a signed version of the Euler numbers A000111.
%C Other rows are defined by a(n+1,k) = a(n,k) + a(n,k+1).
%H Alois P. Heinz, <a href="/A323833/b323833.txt">Antidiagonals n = 0..140, flattened</a>
%H A. Randrianarivony and J. Zeng, <a href="http://dx.doi.org/10.1006/aama.1996.0001">Une famille de polynomes qui interpole plusieurs suites...</a>, Adv. Appl. Math. 17 (1996), 126. See Section 6.
%e The first few antidiagonals are:
%e 0;
%e 1, 1;
%e 1, 0, 1;
%e 2, 3, 3, 2;
%e 5, 3, 0, 3, 5;
%e 16, 21, 24, 24, 21, 16;
%e 61, 45, 24, 0, 24, 45, 61;
%e 272, 333, 378, 402, 402, 378, 333, 272;
%e ...
%e For the array itself, see the Randrianarivony and Zeng (1996) article.
%Y Cf. A000111, A002832 (nexttomain diagonal), A323834.
%K sign,tabl
%O 0,7
%A _N. J. A. Sloane_, Feb 03 2019
%E More terms from _Alois P. Heinz_, Feb 09 2019
