login
A323767
A(n,k) = Sum_{j=0..floor(n/2)} binomial(n-j,j)^k, square array A(n,k) read by antidiagonals, for n >= 0, k >= 0.
2
1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 3, 1, 1, 2, 5, 5, 3, 1, 1, 2, 9, 11, 8, 4, 1, 1, 2, 17, 29, 26, 13, 4, 1, 1, 2, 33, 83, 92, 63, 21, 5, 1, 1, 2, 65, 245, 338, 343, 153, 34, 5, 1, 1, 2, 129, 731, 1268, 1923, 1281, 376, 55, 6
OFFSET
0,6
LINKS
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, 2, ...
2, 3, 5, 9, 17, 33, 65, ...
3, 5, 11, 29, 83, 245, 731, ...
3, 8, 26, 92, 338, 1268, 4826, ...
4, 13, 63, 343, 1923, 10903, 62283, ...
4, 21, 153, 1281, 11553, 108801, 1050753, ...
MATHEMATICA
f := Sum[Power[Binomial[#1 - i, i], #2], {i, 0, #1/2}] &; a = Flatten[Reverse[DeleteCases[Table[Table[f[m - n, n], {n, 0, 20}], {m, 0, 20}], 0, Infinity], 2]] (* Elijah Beregovsky, Nov 24 2020 *)
CROSSREFS
Columns 0-5 give A004526(n+2), A000045(n+1), A051286, A181545, A181546, A181547.
Main diagonal gives A323769.
Cf. A011973,
Sequence in context: A110537 A144434 A322057 * A357824 A159936 A305749
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jan 27 2019
STATUS
approved