login
A323744
Triangle read by rows: T(n,k) is the number of primes in the half-open interval [10^n, 10^n + 10^k), n >= 1, 1 <= k <= n.
1
4, 4, 21, 1, 16, 135, 2, 11, 106, 1033, 1, 6, 81, 861, 8392, 1, 6, 75, 753, 7216, 70435, 0, 2, 61, 614, 6241, 61938, 606028, 1, 6, 54, 551, 5411, 54208, 541854, 5317482, 2, 7, 49, 487, 4832, 48155, 482449, 4814936, 47374753, 0, 5, 44, 406, 4306, 43427, 434650, 4341930, 43336106, 427154205
OFFSET
1,1
COMMENTS
T(n,k) is the number of primes among the first 10^k (n-1)-digit numbers.
Columns (see Example section) illustrate the decreasing density of primes.
FORMULA
T(n,k) = A000720(10^n + 10^k - 1) - A000720(10^n - 1) = A000720(10^n + 10^k) - A000720(10^n).
T(n,k) = A000720(10^n + 10^k) - A006880(n).
EXAMPLE
Table begins
n\k| 1 2 3 4 5 6 7 8 9
-----+-------------------------------------------------
1 | 4
2 | 4 21
3 | 1 16 135
4 | 2 11 106 1033
5 | 1 6 81 861 8392
6 | 1 6 75 753 7216 70435
7 | 0 2 61 614 6241 61938 606028
8 | 1 6 54 551 5411 54208 541854 5317482
9 | 2 7 49 487 4832 48155 482449 4814936 47374753
10 | 0 5 44 406 4306 43427 434650 4341930 43336106
11 | 1 7 47 394 4019 39434 394401 3948161 39475591
12 | 0 4 37 335 3614 36249 361726 3618282 36190991
13 | 0 3 34 354 3382 33456 334312 3342093 33405006
14 | 0 4 30 304 3045 30892 310582 3102679 31019409
15 | 0 2 24 263 2805 28845 289394 2893937 28946421
16 | 0 4 20 270 2697 27168 271897 2714904 27153205
17 | 1 7 27 265 2515 25463 255085 2555873 25549226
CROSSREFS
k=2 column is A093538 (after that sequence's 1st 2 terms).
Sequence in context: A191366 A216164 A270376 * A205142 A072696 A075219
KEYWORD
nonn,tabl
AUTHOR
Jon E. Schoenfield, Apr 13 2019
STATUS
approved