login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Odd numbers k such that sigma(k-1) < sigma(k) < sigma(k+1), sigma(n) = A000203.
3

%I #65 Sep 08 2022 08:46:23

%S 3,63,75,135,147,195,255,399,459,483,495,555,567,615,627,663,675,735,

%T 759,795,819,855,915,975,999,1035,1095,1215,1239,1287,1323,1455,1515,

%U 1539,1647,1659,1683,1815,1827,1875,1935,2079,2115,2175,2235,2247,2295,2415,2499

%N Odd numbers k such that sigma(k-1) < sigma(k) < sigma(k+1), sigma(n) = A000203.

%C It appears that most of the terms are divisible by 3; the smallest exception is 13475.

%C Up to 10^9, 223182 of 20606497 (about 1%) of the terms are not divisible by 3. - _Charles R Greathouse IV_, Nov 28 2019

%H Robert Israel, <a href="/A323726/b323726.txt">Table of n, a(n) for n = 1..10000</a>

%e sigma(62) = 96, sigma(63) = 104, sigma(64) = 127. Hence, 63 is in the sequence.

%e sigma(74) = 114, sigma(75) = 124, sigma(76) = 140. Hence, 75 is in the sequence.

%p Sigmas:= map(numtheory:-sigma, [$1..3000]):

%p select(t -> Sigmas[t-1] < Sigmas[t] and Sigmas[t] < Sigmas[t+1],

%p [seq(i,i=3..3000,2)]); # _Robert Israel_, Nov 23 2019

%t Select[Range[1,8000,2], DivisorSigma[1, # - 1] < DivisorSigma[1, (#)] && DivisorSigma[1, #] < DivisorSigma[1, (# + 1)] &]

%o (Magma) f:=func<n| DivisorSigma(1,n) lt DivisorSigma(1,n+1) >; [k:k in [3..2500 by 2]| f(k-1) and f(k)] // _Marius A. Burtea_, Nov 19 2019

%Y Cf. A000203, A005408, A053224, A067828, A323380.

%K nonn

%O 1,1

%A _K. D. Bajpai_, Nov 19 2019