This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A323680 G.f.: Sum_{n>=0} x^n * ((1+x)^n + 1)^n / (1 + x*(1+x)^n)^(n+1). 8
 1, 1, 2, 3, 10, 27, 109, 427, 1958, 9467, 49459, 274712, 1614199, 9996580, 64940226, 441179351, 3125044744, 23021059143, 175976694409, 1393077001768, 11400165893604, 96286628620151, 838123560744653, 7508677200329118, 69152466448641019, 653972815019717914, 6344196087718370108, 63073829812214409363, 642093553544993640915, 6687618467901426663337, 71209887695115322487153, 774636418450000537370791 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS More generally, the following sums are equal: (1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (q^n + p)^n / (1 + p*q^n*r)^(n+k), (2) Sum_{n>=0} binomial(n+k-1, n) * r^n * (q^n - p)^n / (1 - p*q^n*r)^(n+k), for any fixed integer k; here, k = 1 and r = x, p = 1, q = (1+x). See other examples for k = 2 (A326006), k = 3 (A326007), k = 4 (A326008). LINKS Paul D. Hanna, Table of n, a(n) for n = 0..500 FORMULA G.f.: Sum_{n>=0} x^n * ((1+x)^n + 1)^n / (1 + x*(1+x)^n)^(n+1). G.f.: Sum_{n>=0} x^n * ((1+x)^n - 1)^n / (1 - x*(1+x)^n)^(n+1). G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * ( (1+x)^n - (1+x)^k )^(n-k). G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * ( (1+x)^n + (1+x)^k )^(n-k) * (-1)^k. G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k) * Sum_{j=0..n-k} (-1)^j * binomial(n-k,j) * (1 + x)^((n-j)*(n-k)). FORMULAS INVOLVING TERMS. a(n) = Sum_{i=0..n} Sum_{j=0..n-i} Sum_{k=0..n-i-j} (-1)^k * binomial(n-i,j) * binomial(n-i-j,k) * binomial((n-i-j)*(n-i-k),i). a(n) = Sum_{i=0..n} Sum_{j=0..n-i} Sum_{k=0..n-i-j} binomial((n-i-j)*(n-i-k),i) * (-1)^j * (n-i)! / ((n-i-j-k)!*j!*k!). EXAMPLE G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 10*x^4 + 27*x^5 + 109*x^6 + 427*x^7 + 1958*x^8 + 9467*x^9 + 49459*x^10 + 274712*x^11 + 1614199*x^12 + ... such that A(x) = 1/(1+x) + x*((1+x) + 1)/(1 + x*(1+x))^2 + x^2*((1+x)^2 + 1)^2/(1 + x*(1+x)^2)^3 + x^3*((1+x)^3 + 1)^3/(1 + x*(1+x)^3)^4 + x^4*((1+x)^4 + 1)^4/(1 + x*(1+x)^4)^5 + x^5*((1+x)^5 + 1)^5/(1 + x*(1+x)^5)^6 + x^6*((1+x)^6 + 1)^6/(1 + x*(1+x)^6)^7 + x^7*((1+x)^7 + 1)^7/(1 + x*(1+x)^7)^8 + ... also, A(x) = 1/(1-x) + x*((1+x) - 1)/(1 - x*(1+x))^2 + x^2*((1+x)^2 - 1)^2/(1 - x*(1+x)^2)^3 + x^3*((1+x)^3 - 1)^3/(1 - x*(1+x)^3)^4 + x^4*((1+x)^4 - 1)^4/(1 - x*(1+x)^4)^5 + x^5*((1+x)^5 - 1)^5/(1 - x*(1+x)^5)^6 + x^6*((1+x)^6 - 1)^6/(1 - x*(1+x)^6)^7 + x^7*((1+x)^7 - 1)^7/(1 - x*(1+x)^7)^8 + ... RELATED INFINITE SERIES. At x = -1/2, the g.f. as a power series in x diverges, but the related series converges: S = Sum_{n>=0} (-1/2)^n*(1/2^n + 1)^n / (1 - 1/2^(n+1))^(n+1), and S = Sum_{n>=0} (-1/2)^n*(1/2^n - 1)^n / (1 + 1/2^(n+1))^(n+1). Equivalently, S = Sum_{n>=0} (-2)^n * (2^n + 1)^n / (2^(n+1) - 1)^(n+1), and S = Sum_{n>=0} 2^n * (2^n - 1)^n / (2^(n+1) + 1)^(n+1) ; written explicitly, S = 1/(2-1) - 2*(2+1)/(2^2-1)^2 + 2^2*(2^2+1)^2/(2^3-1)^3 - 2^3*(2^3+1)^3/(2^4-1)^4 + 2^4*(2^4+1)^4/(2^5-1)^5 - 2^5*(2^5+1)^5/(2^6-1)^6 + 2^6*(2^6+1)^6/(2^7-1)^7 + ... also, S = 1/(2+1) + 2*(2-1)/(2^2+1)^2 + 2^2*(2^2-1)^2/(2^3+1)^3 + 2^3*(2^3-1)^3/(2^4+1)^4 + 2^4*(2^4-1)^4/(2^5+1)^5 + 2^5*(2^5-1)^5/(2^6+1)^6 + 2^6*(2^6-1)^6/(2^7+1)^7 + ... where S = 0.54250659711853510199583159448775795614278675261848614946772936514239222... PROG (PARI) {a(n) = my(A = sum(m=0, n+1, x^m*((1+x +x*O(x^n) )^m - 1)^m/(1 - x*(1+x +x*O(x^n) )^m )^(m+1) )); polcoeff(A, n)} for(n=0, 35, print1(a(n), ", ")) (PARI) {a(n) = sum(i=0, n, sum(j=0, n-i, sum(k=0, n-i-j, (-1)^k * binomial(n-i, j) * binomial(n-i-j, k) * binomial((n-i-j)*(n-i-k), i) )))} for(n=0, 35, print1(a(n), ", ")) (PARI) {a(n) = sum(i=0, n, sum(j=0, n-i, sum(k=0, n-i-j, (-1)^j * binomial((n-i-j)*(n-i-k), i) * (n-i)! / ((n-i-j-k)!*j!*k!) )))} for(n=0, 35, print1(a(n), ", ")) CROSSREFS Cf. A323681, A323695, A325059, A326006, A326007, A326008. Sequence in context: A000060 A089752 A264759 * A171190 A216332 A007029 Adjacent sequences:  A323677 A323678 A323679 * A323681 A323682 A323683 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 11 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 16:24 EST 2019. Contains 329808 sequences. (Running on oeis4.)