%I #18 Nov 24 2020 06:34:25
%S 1,1,1,1,2,1,1,1,2,3,3,2,1,1,3,5,6,6,5,2,1,1,3,7,11,13,13,11,7,3,1,1,
%T 4,10,18,25,29,29,24,16,9,3,1,1,4,12,25,41,56,65,65,56,41,25,12,4,1,1,
%U 5,16,37,67,101,131,148,146,126,95,61,32,14,4,1,1
%N Irregular triangle of the coefficients P_(n,j) of Morier-Genoud and Ovsienko's polynomials P_n.
%C A q-deformation of the Pell numbers.
%H Sophie Morier-Genoud and Valentin Ovsienko, <a href="https://arxiv.org/abs/1812.00170">q-deformed rationals and q-continued fractions</a>, arXiv:1812.00170 [math.CO], 2018-2020. See Section 6.3.
%H Sophie Morier-Genoud and Valentin Ovsienko, <a href="https://arxiv.org/abs/2011.10809">Quantum real numbers and q-deformed Conway-Coxeter friezes</a>, arXiv:2011.10809 [math.QA], 2020.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Gaussian_binomial_coefficient">Gaussian binomial coefficient</a>
%H <a href="/index/Ga#Gaussian_binomial_coefficients">Index entries related to Gaussian binomial coefficients</a>.
%F Coefficients of the polynomials defined by p(n) = p(n-2)*(4,2)_q - q^4*p(n-4) where (4,2)_q = 1+q+2*q^2+q^3+q^4, with p(0)=0, p(1)=1, p(2)=1+q, p(3)=1+q+2*q^2+q^3.
%e Triangle begins:
%e 1
%e 1 1
%e 1 2 1 1
%e 1 2 3 3 2 1
%e 1 3 5 6 6 5 2 1
%e 1 3 7 11 13 13 11 7 3 1
%e 1 4 10 18 25 29 29 24 16 9 3 1
%e ...
%Y Cf. A079487, A123245.
%K nonn,tabf
%O 0,5
%A _Michael De Vlieger_, Jan 23 2019