login
A323668
Expansion of e.g.f. exp(exp(2*x)*(BesselI(0,2*x) + BesselI(1,2*x)) - 1).
0
1, 3, 19, 152, 1467, 16445, 208471, 2934321, 45254447, 756995131, 13623709401, 262067291106, 5358900661509, 115953603121881, 2644399031839729, 63346390393538780, 1589177904965680263, 41642328796769014811, 1137083068108603968349, 32287430515011314674632, 951565685429585731747913
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = Sum_{k=1..n} A001700(k)*binomial(n-1,k-1)*a(n-k).
MAPLE
seq(n!*coeff(series(exp(exp(2*x)*(BesselI(0, 2*x)+BesselI(1, 2*x))-1), x=0, 21), x, n), n=0..20); # Paolo P. Lava, Jan 28 2019
MATHEMATICA
nmax = 20; CoefficientList[Series[Exp[Exp[2 x] (BesselI[0, 2 x] + BesselI[1, 2 x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[Binomial[2 k + 1, k + 1] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}]
PROG
(PARI) my(x='x + O('x^25)); Vec(serlaplace(exp(exp(2*x)*(besseli(0, 2*x)+x*besseli(1, 2*x))-1))) \\ Michel Marcus, Jan 24 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 23 2019
STATUS
approved