login
Number of strict solid partitions of n.
3

%I #12 Feb 08 2020 13:33:39

%S 1,1,1,4,4,7,16,19,28,40,82,94,145,190,274,463,580,802,1096,1486,1948

%N Number of strict solid partitions of n.

%C A strict solid partition is an infinite three-dimensional array of distinct positive integers (and any number of zeros) summing to n such that all one-dimensional sections are strictly decreasing until they become all zeros.

%e The a(1) = 1 through a(6) = 16 strict solid partitions, represented as chains of chains of integer partitions:

%e ((1)) ((2)) ((3)) ((4)) ((5)) ((6))

%e ((21)) ((31)) ((32)) ((42))

%e ((2)(1)) ((3)(1)) ((41)) ((51))

%e ((2))((1)) ((3))((1)) ((3)(2)) ((321))

%e ((4)(1)) ((4)(2))

%e ((3))((2)) ((5)(1))

%e ((4))((1)) ((31)(2))

%e ((32)(1))

%e ((4))((2))

%e ((5))((1))

%e ((31))((2))

%e ((3)(2)(1))

%e ((32))((1))

%e ((3)(1))((2))

%e ((3)(2))((1))

%e ((3))((2))((1))

%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];

%t facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];

%t ptnplane[n_]:=Union[Map[Reverse@*primeMS,Join@@Permutations/@facs[n],{2}]];

%t strplptns[n_]:=Join@@Table[Select[ptnplane[Times@@Prime/@y],And[And@@GreaterEqual@@@#,And@@(GreaterEqual@@@Transpose[PadRight[#]])]&],{y,Select[IntegerPartitions[n],UnsameQ@@#&]}]

%t Table[Length[Join@@Table[Select[Tuples[strplptns/@y],And[UnsameQ@@Flatten[#],And@@(GreaterEqual@@@Transpose[Join@@@(PadRight[#,{n,n}]&/@#)])]&],{y,IntegerPartitions[n]}]],{n,10}]

%Y Cf. A000219, A000293 (solid partitions), A000334, A001970, A002974, A114736, A117433 (strict plane partitions), A321662, A323657.

%K nonn,more

%O 0,4

%A _Gus Wiseman_, Jan 22 2019