login
A323654
Number of non-isomorphic multiset partitions of weight n with no constant parts and only two distinct vertices.
5
1, 0, 1, 1, 3, 3, 8, 9, 20, 26, 50, 69, 125, 177, 301, 440, 717, 1055, 1675, 2471, 3835, 5660, 8627, 12697, 19095, 27978, 41581, 60650, 89244, 129490, 188925, 272676, 394809, 566882, 815191, 1164510, 1664295, 2365698, 3361844, 4756030, 6723280, 9468138, 13319299
OFFSET
0,5
COMMENTS
First differs from A304967 at a(10) = 50, A304967(10) = 49.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
Also the number of positive integer matrices with only two columns and sum of entries equal to n, up to row and column permutations.
LINKS
FORMULA
a(2*n) = (A052847(2*n) + A003293(n))/2; a(2*n+1) = A052847(2*n+1)/2. - Andrew Howroyd, Aug 26 2019
EXAMPLE
Non-isomorphic representatives of the a(2) = 1 through a(7) = 9 multiset partitions:
{{12}} {{122}} {{1122}} {{11222}} {{111222}} {{1112222}}
{{1222}} {{12222}} {{112222}} {{1122222}}
{{12}{12}} {{12}{122}} {{122222}} {{1222222}}
{{112}{122}} {{112}{1222}}
{{12}{1122}} {{12}{11222}}
{{12}{1222}} {{12}{12222}}
{{122}{122}} {{122}{1122}}
{{12}{12}{12}} {{122}{1222}}
{{12}{12}{122}}
Inequivalent representatives of the a(8) = 20 matrices:
[4 4] [3 5] [2 6] [1 7]
.
[1 1] [1 1] [1 1] [2 1] [2 1] [1 2] [1 2] [3 1] [2 2] [2 2] [1 3]
[3 3] [2 4] [1 5] [2 3] [1 4] [2 3] [1 4] [1 3] [2 2] [1 3] [1 3]
.
[1 1] [1 1] [1 1] [1 1]
[1 1] [1 1] [2 1] [1 2]
[2 2] [1 3] [1 2] [1 2]
.
[1 1]
[1 1]
[1 1]
[1 1]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={concat(1, (EulerT(vector(n, k, k-1)) + EulerT(vector(n, k, if(k%2, 0, (k+2)\4))))/2)} \\ Andrew Howroyd, Aug 26 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 22 2019
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Aug 26 2019
STATUS
approved