Integers *n* that are *k*-powerful. Con

Compiled by Stan Wagon, Jan. 2019.

For *k* = 5: see A323610; *k* = 6: see A323629; *k* = 7: see A323614.

	smaller than critical power of 2	2 ^{<i>k</i>+1}											differences Δ	notes
k = -1		1	2	3	4	5	6	7	8	9	10	$\rightarrow \infty$	1	symmetric
k = 0		<u>2</u>	4	6	8	10	12	14	16	18	20	$\rightarrow \infty$	2	antisymmetric
k = 1		<u>4</u>	8	12	16	20	24	28	32	36	40	$\rightarrow \infty$	4	symmetric
k = 2		<u>8</u>	<u>12</u>	16	20	24	28	32	36	40	44	$\rightarrow \infty$	4	antisymmetric
k = 3		<u>16</u>	24	32	40	48	56	64	72	80	88	$\rightarrow \infty$	8	symmetric
<i>k</i> = 4		<u>32</u>	<u>40</u>	48	<u>56</u>	64	72	80	88	96	104	$\rightarrow \infty$	8	antisymmetric
<i>k</i> = 5	<u>48</u>	<u>64</u>	72	80	88	96	104	112	120	128	136	$\rightarrow \infty$	8	symmetric
<i>k</i> = 6	<u>96</u>	128	144	160	176	192	200	208	216	224	232	→ ∞	8	antisymmetric
<i>k</i> = 7	144 192 208 224 240	256	272	288	304	320	336	352	368	384	400	$\rightarrow \infty$	16	symmetric
k = 8	192 is first possibility	512	544										16?	antisymmetric? 256 fails

Red entries are those that are not part of the ultimate arithmetic progression that holds out to infinity. Underlined entries admit a unique witnessing set. Overlined entries are not unique (and many of the unmarked ones are not unique). Essentially nothing is known about k = 8. The discoverers of the final complete sequence are:

k = 2 and 3: David Boyd

k = 4 and 5: Berend and Golan

k = 6 and 7: Golan, Pratt, and Wagon

Some of the negative results for k = 6 and 7 are by Berend and Golan.