

A323605


Smallest prime divisor of A000058(n) = A007018(n) + 1 (Sylvester's sequence).


2



2, 3, 7, 43, 13, 3263443, 547, 29881, 5295435634831, 181, 2287, 73
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

a(n) is also the smallest prime divisor of A007018(n+1) that is not a divisor of A007018(n).
The prime numbers a(n) are all distinct, which proves the infinitude of the prime numbers (Saidak's proof).
a(12) <= 2589377038614498251653.  Daniel Suteu, Jan 20 2019


LINKS

Table of n, a(n) for n=0..11.
F. Saidak A new proof of Euclid's theorem, Amer. Math. Monthly, 113:10 (2006) 937938.
Wikipedia,Sylvester's_sequence: Divisibility_and_factorizations


MAPLE

with(numtheory):
u:=1: P:=NULL: to 9 do P:=P, sort([op(divisors(u+1))])[2]: u:=u*(u+1) od:
P;


PROG

(PARI) f(n)=if(n<1, n>=0, f(n1)+f(n1)^2); \\ A007018
a(n)=divisors(f(n)+1)[2]; \\ Michel Marcus, Jan 20 2019


CROSSREFS

Cf. A007018, A000058, A007996 (primes that divide at least one term of A000058).
Sequence in context: A000945 A261564 A126263 * A216826 A030087 A106864
Adjacent sequences: A323602 A323603 A323604 * A323606 A323607 A323608


KEYWORD

nonn,more


AUTHOR

Robert FERREOL, Jan 19 2019


EXTENSIONS

a(10)a(11) from Daniel Suteu, Jan 20 2019


STATUS

approved



