login
A323550
Numbers that can be expressed as (p - 1)*(q - 1) + 1, where p < q are primes.
1
3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 29, 31, 33, 37, 41, 43, 45, 47, 49, 53, 57, 59, 61, 65, 67, 71, 73, 79, 81, 83, 85, 89, 93, 97, 101, 103, 105, 107, 109, 113, 117, 121, 127, 131, 133, 137, 139, 141, 145, 149, 151, 157, 161, 163, 165, 167, 169, 173, 177, 179, 181, 185, 191, 193, 197, 199, 201, 205, 209
OFFSET
1,1
COMMENTS
If p < q are primes and a(n) = (p - 1)*(q - 1) + 1, then x^a(n) == x (mod p*q) for every integer x.
EXAMPLE
181 is a term because 181 = (11 - 1)*(19 - 1) + 1. - Bernard Schott, Jan 19 2019
MATHEMATICA
nmax = 100;
pairs = Table[Table[(Prime[i] - 1)*(Prime[j] - 1) + 1, {i, 1, j - 1}], {j, 2, Prime[nmax]}];
(DeleteDuplicates@Sort@Flatten@pairs)[[1 ;; nmax]]
PROG
(PARI) isok(n) = {if (n % 2, forprime(p = 2, n, forprime(q = p+1, n, if (n == (p - 1)*(q - 1) + 1, return (1)); ); ); ); } \\ Michel Marcus, Feb 25 2019
CROSSREFS
Cf. A065091.
Sequence in context: A363691 A349174 A349177 * A165468 A353124 A354149
KEYWORD
nonn
AUTHOR
Andres Cicuttin, Jan 17 2019
STATUS
approved