login
A323519
a(n) is the number of ways to fill a square matrix with the multiset of prime factors of n, if the number of prime factors (counted with multiplicity) is a perfect square, and a(n) = 0 otherwise.
5
1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 4, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 6, 1, 0, 0, 4, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 4, 0, 4, 0, 0, 1, 12, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 12, 0, 0
OFFSET
1,24
FORMULA
If A001222(n) is a perfect square, then a(n) = A008480(n). Otherwise, a(n) = 0.
EXAMPLE
The a(60) = 12 matrices:
[2 2] [2 2] [2 3] [2 3] [2 5] [2 5] [3 2] [3 2] [3 5] [5 2] [5 2] [5 3]
[3 5] [5 3] [2 5] [5 2] [2 3] [3 2] [2 5] [5 2] [2 2] [2 3] [3 2] [2 2]
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[If[IntegerQ[Sqrt[PrimeOmega[n]]], Length[Permutations[primeMS[n]]], 0], {n, 100}]
CROSSREFS
Positions of 0's are A323521.
Positions of 1's are A323520.
Sequence in context: A348250 A289110 A287287 * A333979 A276580 A331437
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 17 2019
STATUS
approved