login
A323506
a(n) = A323505(n) / A246660(n).
3
1, 2, 4, 3, 8, 12, 6, 4, 16, 24, 24, 24, 12, 18, 8, 5, 32, 48, 48, 48, 48, 72, 48, 40, 24, 36, 36, 36, 16, 24, 10, 6, 64, 96, 96, 96, 96, 144, 96, 80, 96, 144, 144, 144, 96, 144, 80, 60, 48, 72, 72, 72, 72, 108, 72, 60, 32, 48, 48, 48, 20, 30, 12, 7, 128, 192, 192, 192, 192, 288, 192, 160, 192, 288, 288, 288, 192, 288, 160, 120
OFFSET
0,2
LINKS
FORMULA
a(n) = A323505(n) / A246660(n).
For n > 1, a(2n) = 2*a(n).
EXAMPLE
This sequence can be represented as a binary tree, as both A323505 and A246660 have similar tree structures:
1
|
...................2....................
4 3
8......../ \........12 6........./ \.......4
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
16 24 24 24 12 18 8 5
32 48 48 48 48 72 48 40 24 36 36 36 16 24 10 6
etc.
PROG
(PARI)
A001511(n) = (1+valuation(n, 2));
A036987(n) = !bitand(n, 1+n);
A323505(n) = if(!n, 1, if(!(n%2), 2*A323505(n/2), (A001511(n+1)+1-A036987(n))*A323505((n-1)/2)));
A246660(n) = { my(i=0, p=1); while(n>0, if(n%2, i++; p = p * i, i = 0); n = n\2); p; };
A323506(n) = (A323505(n)/A246660(n));
CROSSREFS
Sequence in context: A347976 A253722 A361640 * A357988 A302747 A193949
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 16 2019
STATUS
approved