login
A323471
On a spirally numbered square grid, with labels starting at 1, this is the number of the last cell that a (1,n) leaper reaches before getting trapped, or -1 if it never gets trapped.
11
-1, 2084, 7081, 10847, 25963, 22421, 202891, 142679, 252953, 188501, 257479, 604328, 667827, 57217, 115497, 231930, 203331, 283651, 426851, 153521, 231299, 142267, 236487, 149872, 204527, 215033, 285983, 188082, 153461, 128802, 213853, 202259, 94967, 224778
OFFSET
1,2
COMMENTS
A (1,2) leaper is a chess knight.
a(2)-a(5) were computed by Daniël Karssen.
LINKS
N. J. A. Sloane and Brady Haran, The Trapped Knight, Numberphile video (2019)
CROSSREFS
The sequences involved in this set of related sequences are A316884, A316967, A316667, A316328, A317106, A317105, A317416, A317415, A317438, A317437, and A323469, A323470, A323471, A323472.
Sequence in context: A323714 A343179 A323750 * A251225 A306421 A201917
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Jan 28 2019
EXTENSIONS
More terms from Rémy Sigrist, Jan 29 2019
STATUS
approved