login
Number of ways to fill a Young diagram with positive integers summing to n such that all rows and columns are weakly increasing.
5

%I #16 Aug 19 2020 10:07:49

%S 1,1,3,6,14,26,56,103,203,374,702,1262,2306,4078,7242,12628,21988,

%T 37756,64682,109606,185082,309958,516932,856221,1412461,2316416,

%U 3783552

%N Number of ways to fill a Young diagram with positive integers summing to n such that all rows and columns are weakly increasing.

%C A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers.

%H nLab, <a href="https://ncatlab.org/nlab/show/Young+diagram">Young Diagram</a>.

%H The Unapologetic Mathematician weblog, <a href="https://unapologetic.wordpress.com/2011/02/02/generalized-young-tableaux/">Generalized Young Tableaux</a>.

%e The a(4) = 14 generalized Young tableaux:

%e 4 1 3 2 2 1 1 2 1 1 1 1

%e .

%e 1 2 1 1 1 2 1 1 1 1 1

%e 3 2 2 1 1 1 1

%e .

%e 1 1 1

%e 1 1

%e 2 1

%e .

%e 1

%e 1

%e 1

%e 1

%e The a(5) = 26 generalized Young tableaux:

%e 5 1 4 2 3 1 1 3 1 2 2 1 1 1 2 1 1 1 1 1

%e .

%e 1 2 1 1 1 3 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1

%e 4 3 3 1 2 1 2 2 1 1 1 1

%e .

%e 1 1 1 1 1 2 1 1 1 1 1

%e 1 2 1 1 1 1 1

%e 3 2 2 1 1 1

%e .

%e 1 1 1

%e 1 1

%e 1 1

%e 2 1

%e .

%e 1

%e 1

%e 1

%e 1

%e 1

%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];

%t facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];

%t ptnplane[n_]:=Union[Map[primeMS,Join@@Permutations/@facs[n],{2}]];

%t Table[Sum[Length[Select[ptnplane[Times@@Prime/@y],And@@(LessEqual@@@Transpose[PadRight[#]/.(0->Infinity)])&]],{y,IntegerPartitions[n]}],{n,10}]

%Y Cf. A000085, A000219, A003293, A053529, A114736, A138178, A296188, A299968.

%Y Cf. A323436, A323437, A323438, A323439, A323451.

%K nonn,more

%O 0,3

%A _Gus Wiseman_, Jan 16 2019

%E a(16)-a(26) from _Seiichi Manyama_, Aug 19 2020