login
A323396
Irregular array read by rows, where T(n, k) is the k-th prime that is both left-truncatable and right-truncatable in base n.
3
2, 23, 2, 3, 11, 2, 3, 13, 17, 67, 2, 3, 5, 17, 23, 83, 191, 479, 839, 2, 3, 5, 17, 19, 23, 37, 2, 3, 5, 7, 19, 23, 29, 31, 43, 47, 59, 61, 139, 157, 239, 251, 331, 349, 379, 479, 491, 1867, 2, 3, 5, 7, 23, 29, 47, 173, 2, 3, 5, 7, 23, 37, 53, 73, 313, 317, 373, 797, 3137, 3797, 739397
OFFSET
3,1
COMMENTS
The n-th row contains A323390(n) terms.
The largest term in the n-th row is given by A323137(n).
LINKS
EXAMPLE
Rows for n = 3..7:
[2, 23]
[2, 3, 11]
[2, 3, 13, 17, 67]
[2, 3, 5, 17, 23, 83, 191, 479, 839]
[2, 3, 5, 17, 19, 23, 37]
PROG
(PARI)
digitsToNum(d, base) = sum(k=1, #d, base^(k-1) * d[k]);
isLeftTruncatable(d, base) = my(ok=1); for(k=1, #d, if(!isprime(digitsToNum(d[1..k], base)), ok=0; break)); ok;
generateFromPrefix(p, base) = my(seq = [p]); for(n=1, base-1, my(t=concat(n, p)); if(isprime(digitsToNum(t, base)), seq=concat(seq, select(v -> isLeftTruncatable(v, base), generateFromPrefix(t, base))))); seq;
bothTruncatablePrimesInBase(base) = my(t=[]); my(P=primes(primepi(base-1))); for(k=1, #P, t=concat(t, generateFromPrefix([P[k]], base))); vector(#t, k, digitsToNum(t[k], base));
row(n) = vecsort(bothTruncatablePrimesInBase(n));
T(n, k) = row(n)[k];
CROSSREFS
KEYWORD
nonn,base,look,tabf
AUTHOR
STATUS
approved