Integers *n* **that are** *k***-powerful.** Compiled by Stan Wagon, Jan. 2019.

For k = 5: see A323610; k = 6: see A323629; k = 7: see A323614.

	smaller than critical power of 2	2^{k+1}											differences Δ	notes
k = -1		1	2	3	4	5	6	7	8	9	10	$\rightarrow \infty$	1	symmetric
k = 0		<u>2</u>	4	6	8	10	12	14	16	18	20	$\rightarrow \infty$	2	antisymmetric
k=1		4	8	12	16	20	24	28	32	36	40	$\rightarrow \infty$	4	symmetric
k=2		<u>8</u>	<u>12</u>	16	20	24	28	32	36	40	44	$\rightarrow \infty$	4	antisymmetric
k=3		<u>16</u>	24	32	40	48	56	64	72	80	88	$\rightarrow \infty$	8	symmetric
k = 4		<u>32</u>	<u>40</u>	48	56	64	72	80	88	96	104	→ &	8	antisymmetric
k = 5	<u>48</u>	64	<u>72</u>	80	88	96	104	112	120	128	136	→ ∞	8	symmetric
k = 6	96	128	144	160	176	192	200	208	216	224	232	→ ∞	8	antisymmetric
k = 7	144 192 208 224 240	256	272	288	304	320	336	352	368	384	400	$\rightarrow \infty$	16	symmetric
k=8	192	512	544										16?	antisymmetric? 256 fails

Red entries are those that are not part of the ultimate arithmetic progression that holds out to infinity. Underlined entries admit a unique witnessing set. Overlined entries are not unique (and many of the unmarked ones are not unique). Essentially nothing is known about k = 8, though it is known that 192 is the smallest example. The discoverers of the final complete sequence are:

k = 2 and 3: David Boyd

k = 4 and 5: Berend and Golan

k = 6 and 7: Golan, Pratt, and Wagon

Some of the negative results for k = 6 and 7 are by Berend and Golan.