%I #17 Apr 21 2022 21:56:16
%S 1,1,1,1,0,-1,1,-1,1,1,1,0,0,0,1,1,-1,-1,1,-1,-1,1,0,1,0,-1,0,-1,1,1,
%T 0,1,1,0,-1,1,1,0,-1,0,0,0,1,0,1,1,1,1,1,1,-1,-1,-1,1,1,1,0,0,0,-1,0,
%U 1,0,0,0,-1,1,-1,-1,1,-1,-1,1,-1,1,1,1,-1
%N Square array read by antidiagonals: T(n,k) = Kronecker symbol (-n/k), n >= 1, k >= 1.
%C If A215200 is arranged into a square array A215200(n,k) = kronecker symbol(n/k) with n >= 0, k >= 1, then this sequence gives the other half of the array.
%C Note that there is no such n such that the n-th row and the n-th column are the same.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/KroneckerSymbol.html">Kronecker Symbol</a>.
%e Table begins
%e 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, ... ((-1/k) = A034947)
%e 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, ... ((-2/k) = A188510)
%e 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, ... ((-3/k) = A102283)
%e 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, ... ((-4/k) = A101455)
%e 1, -1, 1, 1, 0, -1, 1, -1, 1, 0, ... ((-5/k) = A226162)
%e 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, ... ((-6/k) = A109017)
%e 1, 1, -1, 1, -1, -1, 0, 1, 1, -1, ... ((-7/k) = A175629)
%e 1, 0, 1, 0, -1, 0, -1, 0, 1, 0, ... ((-8/k) = A188510)
%e ...
%o (PARI) T(n,k) = kronecker(-n, k)
%Y Cf. A215200.
%Y The first rows are listed in A034947, A188510, A102283, A101455, A226162, A109017, A175629, A188510, ...
%K sign,tabl
%O 1,1
%A _Jianing Song_, Jan 12 2019