login
A323335
Square array T(n, k) read by antidiagonals upwards, n >= 0 and k >= 0: the point with coordinates X=k and Y=n is the T(n, k)-th term of the first type of Wunderlich curve.
1
1, 2, 6, 3, 5, 7, 48, 4, 8, 16, 49, 47, 9, 15, 17, 54, 50, 46, 10, 14, 18, 55, 53, 51, 45, 11, 13, 19, 56, 60, 52, 44, 40, 12, 20, 24, 57, 59, 61, 43, 41, 39, 21, 23, 25, 462, 58, 62, 70, 42, 38, 30, 22, 26, 106, 463, 461, 63, 69, 71, 37, 31, 29, 27, 105, 107
OFFSET
0,2
COMMENTS
Each natural numbers appears once in the sequence.
FORMULA
T(A323259(n), A323258(n)) = n.
EXAMPLE
Array T(n, k) begins:
n\k| 0 1 2 3 4 5 6 7 8
---+------------------------------------
0 | 1 6---7 16--17--18--19 24--25
| | | | | | | |
1 | 2 5 8 15--14--13 20 23 26
| | | | | | | |
2 | 3---4 9--10--11--12 21--22 27
| |
3 | 48--47--46--45 40--39 30--29--28
| | | | | |
4 | 49--50--51 44 41 38 31--32--33
| | | | | |
5 | 54--53--52 43--42 37--36--35--34
| |
6 | 55 60--61 70--71--72--73 78--79
| | | | | | | |
7 | 56 59 62 69--68--67 74 77 80
| | | | | | | |
8 | 57--58 63--64--65--66 75--76 81
CROSSREFS
See A163334 for a similar sequence.
Sequence in context: A093650 A064433 A163338 * A338444 A139384 A083481
KEYWORD
nonn,tabl
AUTHOR
Rémy Sigrist, Jan 11 2019
STATUS
approved