login
G.f. A(x) satisfies: 1 = Sum_{n>=0} ( (1+x)^n - 7*x*A(x) )^n * 3^n / 4^(n+1).
9

%I #7 Jan 10 2019 22:35:28

%S 1,27,2625,429195,95328009,26290301175,8582072887881,3220902003386403,

%T 1363088948866736193,641495666596787938899,332204944661961666375393,

%U 187727027521862538450725607,114965661645391124805612197265,75859037026020765382177030210443,53662537374831689572836358288777665,40519124222573071898287923651933134187,32530810789422606721939134905409891249177,27674478227000422349878455201664033007066919

%N G.f. A(x) satisfies: 1 = Sum_{n>=0} ( (1+x)^n - 7*x*A(x) )^n * 3^n / 4^(n+1).

%F G.f. A(x) satisfies the following identities.

%F (1) 1 = Sum_{n>=0} ( (1+x)^n - 7*x*A(x) )^n * 3^n / 4^(n+1).

%F (2) 1 = Sum_{n>=0} (1+x)^(n^2) * 3^n / (4 + 21*x*A(x)*(1+x)^n)^(n+1).

%e G.f.: A(x) = 1 + 27*x + 2625*x^2 + 429195*x^3 + 95328009*x^4 + 26290301175*x^5 + 8582072887881*x^6 + 3220902003386403*x^7 + 1363088948866736193*x^8 + ...

%e such that

%e 1 = 1/4 + ((1+x) - 7*x*A(x))*3/4^2 + ((1+x)^2 - 7*x*A(x))^2*3^2/4^3 + ((1+x)^3 - 7*x*A(x))^3*3^3/4^4 + ((1+x)^4 - 7*x*A(x))^4*3^4/4^5 + ...

%e Also,

%e 1 = 1/(4 + 21*x*A(x)) + (1+x)*3/(4 + 21*x*A(x)*(1+x))^2 + (1+x)^4*3^2/(4 + 21*x*A(x)*(1+x)^2)^3 + (1+x)^9*3^3/(4 + 21*x*A(x)*(1+x)^3)^4 + ...

%o (PARI) \p120

%o {A=vector(1); A[1]=1; for(i=1,20, A = concat(A,0);

%o A[#A] = round( Vec( sum(n=0,1200, ( (1+x +x*O(x^#A))^n - 7*x*Ser(A) )^n * 3^n/4^(n+1)*1.)/21 ) )[#A+1]); A}

%Y Cf. A301435, A303288, A323315, A323316, A323317, A323318, A323319, A323320, A323321.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jan 10 2019