login
Number of 3-uniform hypergraphs spanning n labeled vertices where no two edges have two vertices in common.
4

%I #12 Aug 15 2019 01:39:26

%S 1,0,0,1,0,15,160,4125,193200,19384225

%N Number of 3-uniform hypergraphs spanning n labeled vertices where no two edges have two vertices in common.

%F Inverse binomial transform of A323293. - _Andrew Howroyd_, Aug 14 2019

%e The a(5) = 15 hypergraphs:

%e {{1,2,3},{1,4,5}}

%e {{1,2,3},{2,4,5}}

%e {{1,2,3},{3,4,5}}

%e {{1,2,4},{1,3,5}}

%e {{1,2,4},{2,3,5}}

%e {{1,2,4},{3,4,5}}

%e {{1,2,5},{1,3,4}}

%e {{1,2,5},{2,3,4}}

%e {{1,2,5},{3,4,5}}

%e {{1,3,4},{2,3,5}}

%e {{1,3,4},{2,4,5}}

%e {{1,3,5},{2,3,4}}

%e {{1,3,5},{2,4,5}}

%e {{1,4,5},{2,3,4}}

%e {{1,4,5},{2,3,5}}

%e Non-isomorphic representatives of the 3 unlabeled 3-uniform hypergraphs spanning 6 vertices where no two edges have two vertices in common, and their multiplicities in the labeled case which add up to a(6) = 160:

%e 10 X {{1,2,3},{4,5,6}}

%e 120 X {{1,3,5},{2,3,6},{4,5,6}}

%e 30 X {{1,2,4},{1,3,5},{2,3,6},{4,5,6}}

%t stableSets[u_,Q_]:=If[Length[u]===0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r===w||Q[r,w]||Q[w,r]],Q]]]];

%t Table[Length[Select[stableSets[Subsets[Range[n],{3}],Length[Intersection[#1,#2]]>=2&],Union@@#==Range[n]&]],{n,6}]

%Y Cf. A000665, A025035, A125791, A190865, A289837, A302374, A302394, A320395, A322451, A323293-A323299.

%K nonn,more

%O 0,6

%A _Gus Wiseman_, Jan 10 2019

%E a(9) from _Andrew Howroyd_, Aug 14 2019