login
A323272
Numbers of the form p_1*p_2*p_3*...*p_r where r is 2 or an odd number > 2, and the p_i are distinct primes congruent to 1 mod 4 such that Legendre(p_i/p_j) = -1 for all i != j.
4
65, 85, 185, 265, 365, 481, 485, 493, 533, 565, 629, 685, 697, 785, 865, 949, 965, 985, 1037, 1073, 1157, 1165, 1189, 1241, 1261, 1285, 1385, 1417, 1465, 1565, 1585, 1649, 1685, 1765, 1769, 1781, 1853, 1865, 1921, 1937, 1985, 2117, 2165, 2173
OFFSET
1,1
COMMENTS
If k is a term, the Pell equation x^2 - k*y^2 = -1 has a solution [Dirichlet, Newman (1977)]. This is only a sufficient condition, there are many other solutions, see A031396.
LINKS
Morris Newman, A note on an equation related to the Pell equation, The American Mathematical Monthly 84.5 (1977): 365-366.
CROSSREFS
Cf. A002144, A031396. Includes the union of A322781 and A323271.
Sequence in context: A274044 A024409 A131574 * A322781 A020273 A034071
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 11 2019
STATUS
approved