login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A323261 A323260(n)/2. 2

%I

%S 0,1,3,12,48,195,791,3211,13031,52884,214614,870949,3534489,14343685,

%T 58209627,236226664,958656488,3890425619,15788149015,64071562799,

%U 260015607607,1055196927408,4282206617710,17378077058869,70523818494625,286200191092217,1161459364079427,4713441487441732,19128117041912800

%N A323260(n)/2.

%H Colin Barker, <a href="/A323261/b323261.txt">Table of n, a(n) for n = 0..1000</a>

%H K. A. Van'kov, V. M. Zhuravlyov, <a href="https://www.mccme.ru/free-books/matpros/pdf/mp-22.pdf#page=127">Regular tilings and generating functions</a>, Mat. Pros. Ser. 3, issue 22, 2018 (127-157) [in Russian]. See Table 1, g_n/2.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-3,-5,7,-1).

%F Van'kov and Zhuravlyov give recurrences.

%F From _Colin Barker_, Jan 10 2019: (Start)

%F G.f.: x*(1 - x)^3*(1 + x) / (1 - 5*x + 3*x^2 + 5*x^3 - 7*x^4 + x^5).

%F a(n) = 5*a(n-1) - 3*a(n-2) - 5*a(n-3) + 7*a(n-4) - a(n-5) for n>5.

%F (End)

%o (PARI) concat(0, Vec(x*(1 - x)^3*(1 + x) / (1 - 5*x + 3*x^2 + 5*x^3 - 7*x^4 + x^5) + O(x^30))) \\ _Colin Barker_, Jan 10 2019

%Y Cf. A323260.

%K nonn,easy

%O 0,3

%A _N. J. A. Sloane_, Jan 09 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 23 16:14 EDT 2019. Contains 325258 sequences. (Running on oeis4.)