login
A323235
Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(1) = 0, f(n) = -1 if n is an odd number > 1, and f(n) = A323234(n) for even numbers >= 4.
4
1, 2, 3, 2, 3, 4, 3, 2, 3, 5, 3, 6, 3, 7, 3, 2, 3, 5, 3, 8, 3, 9, 3, 10, 3, 11, 3, 12, 3, 13, 3, 2, 3, 5, 3, 8, 3, 9, 3, 14, 3, 15, 3, 16, 3, 17, 3, 18, 3, 19, 3, 20, 3, 21, 3, 22, 3, 23, 3, 24, 3, 25, 3, 2, 3, 5, 3, 8, 3, 9, 3, 14, 3, 15, 3, 16, 3, 17, 3, 26, 3, 27, 3, 28, 3, 29, 3, 30, 3, 31, 3, 32, 3, 33, 3, 34, 3, 35, 3, 36, 3, 37, 3, 38, 3
OFFSET
1,2
COMMENTS
For all i, j:
A319701(i) = A319701(j) => a(i) = a(j),
A323234(i) = A323234(j) => a(i) = a(j).
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A053644(n) = { my(k=1); while(k<=n, k<<=1); (k>>1); }; \\ From A053644
A053645(n) = (n-A053644(n));
A079944off0(n) = (1==binary(2+n)[2]);
A323235aux(n) = if(1==n, 0, if(n%2, -1, [A053645(n), A079944off0(n-2)]));
v323235 = rgs_transform(vector(up_to, n, A323235aux(n)));
A323235(n) = v323235[n];
CROSSREFS
Cf. also A323241 (somewhat analogous filter sequence for prime factorization).
Sequence in context: A105500 A288569 A088748 * A086374 A322591 A332827
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 08 2019
STATUS
approved