OFFSET
0,2
FORMULA
a(n) = A323206(n, n+1).
a(n) = Sum_{j=0..n+1} (binomial(2*(n+1)-j,n+1)-binomial(2*(n+1)-j,n+2))*n^(n+1-j).
a(n) = Sum_{j=0..n+1} binomial(n+1+j, n+1)*(1 - j/(n+2))*n^j.
a(n) = 1 + Sum_{j=0..n} ((1+j)*binomial(2*(n+1)-j, n+2)/(n+1-j))*n^(n+1-j).
a(n) = (1/(2*Pi))*Integral_{x=0..4*n} (sqrt(x*(4*n-x))*x^(n+1))/(1+(n-1)*x), n>0.
a(n) ~ (4^(n + 2)*n^(n + 3))/(sqrt(Pi)*(1 - 2*n)^2*(n + 1)^(3/2)).
MAPLE
# The function ballot is defined in A238762.
a := n -> add(ballot(2*j, 2*n+2)*n^j, j=0..n+1):
seq(a(n), n=0..16);
MATHEMATICA
a[n_] := Hypergeometric2F1[-n - 1, n + 2, -n - 2, n];
Table[a[n], {n, 0, 16}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Feb 25 2019
STATUS
approved