OFFSET
0,6
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
Wikipedia, Partition of a set
EXAMPLE
T(3,2) = 18: 1a|2a3b, 1a|2b3a, 1b|2a3b, 1b|2b3a, 1a3b|2a, 1b3a|2a, 1a3b|2b, 1b3a|2b, 1a2b|3a, 1b2a|3a, 1a2b|3b, 1b2a|3b, 1a|2a|3b, 1a|2b|3a, 1b|2a|3a, 1a|2b|3b, 1b|2a|3b, 1b|2b|3a.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 4;
0, 1, 18, 30;
0, 1, 74, 360, 360;
0, 1, 310, 3450, 8880, 6240;
0, 1, 1382, 31770, 160080, 271800, 146160;
0, 1, 6510, 298662, 2635920, 8152200, 10190880, 4420080;
...
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, add(k!/(k-j)!
*binomial(n-1, j-1)*A(n-j, k), j=1..min(k, n)))
end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
A[n_, k_] := A[n, k] = If[n==0, 1, Sum[k!/(k - j)! Binomial[n - 1, j - 1]* A[n - j, k], {j, Min[k, n]}]];
T[n_, k_] := Sum[A[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 30 2019
STATUS
approved