login
A323096
Digits of the 2-adic integer 9^(1/3).
4
1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0
OFFSET
0
FORMULA
a(n) = (A322999(n+1) - A322999(n))/2^n.
a(n) = 0 if A322999(n)^3 - 9 is divisible by 2^(n+1), otherwise a(n) = 1.
EXAMPLE
Equals ...0000001100001111011111101101000100011001.
PROG
(PARI) a(n) = lift(sqrtn(9+O(2^(n+1)), 3))\2^n
CROSSREFS
Cf. A322999.
Digits of p-adic cubic roots:
A323000 (2-adic, 3^(1/3));
A323045 (2-adic, 5^(1/3));
A323095 (2-adic, 7^(1/3));
this sequence (2-adic, 9^(1/3));
A290566 (5-adic, 2^(1/3));
A290563 (5-adic, 3^(1/3));
A309443 (5-adic, 4^(1/3));
A319297, A319305, A319555 (7-adic, 6^(1/3));
A321106, A321107, A321108 (13-adic, 5^(1/3)).
Sequence in context: A363801 A347283 A214293 * A359379 A120527 A188093
KEYWORD
nonn,base
AUTHOR
Jianing Song, Aug 30 2019
STATUS
approved