login
A323056
Numbers with exactly five distinct exponents in their prime factorization, or five distinct parts in their prime signature.
5
174636000, 206388000, 244490400, 261954000, 269892000, 274428000, 288943200, 291060000, 301644000, 309582000, 343980000, 349272000, 365148000, 366735600, 377848800, 383292000, 404838000, 411642000, 412776000, 422301600, 433414800, 449820000, 452466000, 457380000
OFFSET
1,1
COMMENTS
The first term is A006939(5) = 174636000.
Positions of 5's in A071625.
Numbers k such that A001221(A181819(k)) = 5.
LINKS
EXAMPLE
174636000 = 2^5 * 3^4 * 5^3 * 7^2 * 11^1 has five distinct exponents so belongs to the sequence.
MATHEMATICA
Select[Range[300000000], Length[Union[Last/@FactorInteger[#]]]==5&]
PROG
(PARI) is(n) = #Set(factor(n)[, 2]) == 5 \\ David A. Corneth, Jan 12 2019
CROSSREFS
One distinct exponent: A062770 or A072774.
Two distinct exponents: A323055.
Three distinct exponents: A323024.
Four distinct exponents: A323025.
Five distinct exponents: A323056.
Sequence in context: A003843 A093047 A093046 * A300555 A306876 A213966
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 03 2019
EXTENSIONS
a(13)-a(24) from Daniel Suteu, Jan 12 2019
STATUS
approved