login
A323049
Numbers that are neither 5-smooth nor a sum of two 5-smooth numbers.
6
71, 119, 142, 191, 211, 213, 223, 238, 239, 284, 299, 311, 319, 355, 357, 359, 367, 373, 382, 397, 419, 422, 426, 431, 446, 461, 463, 467, 473, 476, 478, 479, 497, 523, 529, 547, 551, 553, 559, 568, 569, 571, 573, 583, 589, 595, 598, 599, 607, 613, 617, 619, 622, 623, 638, 639, 659, 669, 671, 703, 709, 710, 713, 714
OFFSET
1,1
COMMENTS
Complementary set of (A323048).
Also numbers k such that at least three five-smooth numbers are needed to sum to k. - David A. Corneth, Jan 04 2019
Contains all k == 71 or 119 (mod 120). - Robert Israel, Apr 02 2019
LINKS
MAPLE
N:= 1000: # to get all terms <= N
V:= {seq(seq(seq(2^a*3^b*5^c, a = 0 .. floor(log[2](N/3^b/5^c))), b = 0 .. floor(log[3](N/5^c))), c=0..floor(log[5](N)))}:
S:= {$1..N} minus V minus {seq(seq(V[i]+V[j], i=1..j), j=1..nops(V))}:
A:= sort(convert(S, list)): # Robert Israel, Apr 02 2019
MATHEMATICA
f[n_] := Union@Flatten@Table[2^a*3^b*5^c, {a, 0, Log2[n]}, {b, 0, Log[3, n/2^a]}, {c, 0, Log[5, n/(2^a*3^b)]}]; b = Block[{nn = 800, s}, s = f[nn]; {0, 1}~Join~
Select[Union@Flatten@Outer[Plus, s, s], # <= nn &]];
Complement[Range[800], b]
CROSSREFS
Similar to A323046 (for 3-smooth numbers).
Sequence in context: A243888 A033246 A141879 * A026063 A244167 A115395
KEYWORD
nonn
AUTHOR
Carlos Alves, Jan 03 2019
STATUS
approved