%I #30 Aug 30 2019 02:44:08
%S 1,0,1,1,1,0,1,0,0,1,1,1,0,0,1,0,0,1,0,0,0,0,1,0,1,1,0,1,1,0,0,1,1,0,
%T 0,0,0,1,1,1,1,1,0,1,1,1,1,1,1,0,1,0,0,1,0,0,0,1,0,1,1,1,0,0,1,0,0,1,
%U 0,0,1,0,0,0,1,0,1,1,0,1,0,0,1,1,1,0,0,0
%N Digits of the 2-adic integer 5^(1/3).
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/P-adic_number">p-adic number</a>
%F a(n) = (A322926(n+1) - A322926(n))/2^n.
%F a(n) = 0 if A322926(n)^3 - 5 is divisible by 2^(n+1), otherwise a(n) = 1.
%e Equals ...1110000110011011010000100100111001011101.
%o (PARI) a(n) = lift(sqrtn(5+O(2^(n+1)), 3))\2^n
%Y Cf. A322926.
%Y Digits of p-adic cubic roots:
%Y A323000 (2-adic, 3^(1/3));
%Y this sequence (2-adic, 5^(1/3));
%Y A323095 (2-adic, 7^(1/3));
%Y A323096 (2-adic, 9^(1/3));
%Y A290566 (5-adic, 2^(1/3));
%Y A290563 (5-adic, 3^(1/3));
%Y A309443 (5-adic, 4^(1/3));
%Y A319297, A319305, A319555 (7-adic, 6^(1/3));
%Y A321106, A321107, A321108 (13-adic, 5^(1/3)).
%K nonn,base
%O 0
%A _Jianing Song_, Aug 30 2019