login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A323012 a(n) = (1/sqrt(n^2+1)) * T_{2*n+1}(sqrt(n^2+1)) where T_{n}(x) is a Chebyshev polynomial of the first kind. 2
1, 5, 305, 53353, 18674305, 10928351501, 9616792908241, 11868363584907985, 19553538801258341377, 41456387654578883552149, 109939727677547706703222001, 356521758767660233608385698361, 1387930545993760882531890016305025 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..193

Wikipedia, Chebyshev polynomials.

Index entries for sequences related to Chebyshev polynomials.

FORMULA

a(n) = Sum_{k=0..n} binomial(2*n+1,2*k)*(n^2+1)^(n-k)*n^(2*k).

a(n) ~ 2^(2*n) * n^(2*n). - Vaclav Kotesovec, Jan 02 2019

MATHEMATICA

Join[{1}, Table[Sum[Binomial[2 n + 1, 2 k] (n^2 + 1)^(n - k) n^(2 k), {k, 0, n}], {n, 20}]] (* Vincenzo Librandi, Jan 03 2019 *)

PROG

(PARI) {a(n) = sum(k=0, n, binomial(2*n+1, 2*k)*(n^2+1)^(n-k)*n^(2*k))}

(MAGMA) [&+[Binomial(2*n+1, 2*k)*(n^2+1)^(n-k)*n^(2*k): k in [0..n]]: n in [0..15]]; // Vincenzo Librandi, Jan 03 2019

CROSSREFS

Diagonal of A188647.

Sequence in context: A158994 A158996 A042763 * A300425 A300687 A300610

Adjacent sequences:  A323009 A323010 A323011 * A323013 A323014 A323015

KEYWORD

nonn

AUTHOR

Seiichi Manyama, Jan 02 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 18:14 EST 2020. Contains 330987 sequences. (Running on oeis4.)