The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A322933 Digits of the 8-adic integer 7^(1/3). 3
 7, 2, 6, 6, 2, 7, 7, 2, 0, 6, 5, 6, 7, 3, 5, 6, 1, 5, 6, 1, 0, 0, 2, 4, 6, 1, 5, 0, 4, 3, 3, 4, 3, 3, 0, 5, 2, 5, 4, 4, 5, 2, 7, 5, 2, 7, 2, 1, 4, 5, 7, 5, 7, 0, 2, 7, 0, 1, 3, 2, 4, 7, 6, 5, 1, 1, 2, 4, 2, 0, 7, 2, 5, 4, 0, 4, 7, 0, 4, 3, 5, 5, 1, 3, 4, 4, 6, 1, 7, 7, 3, 5, 3, 6, 6, 5, 7, 5, 0, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The octal version of A225405. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..10000 Wikipedia, Hensel's Lemma. FORMULA Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 5 * (b(n-1)^3 - 7) mod 8^n for n > 1, then a(n) = (b(n+1) - b(n))/8^n. - Seiichi Manyama, Aug 14 2019 EXAMPLE 56027726627^3 == 7 (mod 8^11) in octal. PROG (PARI) N=100; Vecrev(digits(lift((7+O(2^(3*N)))^(1/3)), 8), N) \\ Seiichi Manyama, Aug 14 2019 (Ruby) def A322933(n)   ary = [7]   a = 7   n.times{|i|     b = (a + 5 * (a ** 3 - 7)) % (8 ** (i + 2))     ary << (b - a) / (8 ** (i + 1))     a = b   }   ary end p A322933(100) # Seiichi Manyama, Aug 14 2019 CROSSREFS Cf. A225405 (decimal version), A322931, A322932. Sequence in context: A019934 A295874 A182548 * A143306 A199075 A228045 Adjacent sequences:  A322930 A322931 A322932 * A322934 A322935 A322936 KEYWORD nonn,base,easy AUTHOR Patrick A. Thomas, Dec 31 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 22 13:53 EDT 2020. Contains 337289 sequences. (Running on oeis4.)