login
A322928
a(0)=1; for n>0, a(n) is the number of rooted 3-regular maps with 2n vertices on the projective plane.
1
1, 9, 118, 1773, 28650, 484578, 8457708, 151054173, 2745685954, 50606020854, 943283037684, 17746990547634, 336517405188900, 6423775409047716, 123332141503711704, 2379824766494404317, 46124764901514110898, 897483137740689843054, 17524230350476917414180
OFFSET
0,2
LINKS
Valentin Bonzom, Guillaume Chapuy, Maciej Dolega, Enumeration of non-oriented maps via integrability, Alg. Combin. 5 (6) (2022) p 1363-1390, A.3.
Evgeniy Krasko and Alexander Omelchenko, Enumeration of r-regular maps on the torus. Part I: Rooted maps on the torus, the projective plane and the Klein bottle. Sensed maps on the torus, Discrete Mathematics (2019) Vol. 342, Issue 2, 584-599. Also arXiv:1709.03225 [math.CO]. See Th. 3.3 and Table 2.
FORMULA
Theorem 3.3 gives an explicit formula.
From Vaclav Kotesovec, Dec 30 2022: (Start)
Recurrence: (n-3)*(n-2)*(n-1)*n*(n+1)*a(n) = 12*(n-3)*(n-2)*(n-1)*(108*n^2 - 432*n + 505)*a(n-2) - 576*(n-3)*(3*n - 10)*(3*n - 8)*(108*n^2 - 648*n + 1049)*a(n-4) + 995328*(n-4)*(3*n - 16)*(3*n - 14)*(3*n - 10)*(3*n - 8)*a(n-6).
a(n) ~ Gamma(1/4) * 2^(2*n - 5/4) * 3^(3*n/2 + 5/4) / (Pi * n^(5/4)) * (1 - 2^(7/4)*sqrt(Pi)/(Gamma(1/4)*3^(3/4)*n^(1/4)) + Pi/(Gamma(1/4)^2*sqrt(3*n))).
(End)
MAPLE
A[0]:= 1: A[1]:= 9: A[2]:= 118: A[3]:= 1773: A[4]:= 28650: A[5]:= 484578:
for n from 6 to 20 do
A[n]:= 995328*(n - 4)*(3*n - 16)*(3*n - 14)*(3*n - 10)*(3*n - 8)*A[n - 6]/((n - 3)*(n - 2)*(n - 1)*n*(n + 1)) - 576*(3*n - 10)*(3*n - 8)*(108*n^2 - 648*n + 1049)*A[n - 4]/((n - 2)*(n - 1)*n*(n + 1)) + 12*(108*n^2 - 432*n + 505)*A[n - 2]/(n*(n + 1))
od:
seq(A[i], i=0..20); # Robert Israel, Dec 30 2022
MATHEMATICA
a[n_] := -((2^(2 n + 1) (3 n)!!)/((n + 1)! n!!)) + (3 2^(2 n))/(n + 1)!! Sum[(3^k (2 k - 1)!! (3 n - 2 k - 1)!!)/(2^k k! (n - k)!), {k, 0, n}];
Table[a[n], {n, 0, 20}] (* Andrey Zabolotskiy, Dec 29 2022 *)
CROSSREFS
Cf. A002005 (genus 0)
Sequence in context: A051617 A358387 A166823 * A340236 A087984 A197544
KEYWORD
nonn
AUTHOR
Evgeniy Krasko, Dec 31 2018
EXTENSIONS
Added initial term a(0)=1 to match Taylor series expansion in Theorem 3.3. - N. J. A. Sloane, Jan 11 2019
Terms a(11) and beyond from Andrey Zabolotskiy, Dec 29 2022
STATUS
approved