login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322890 a(n) = value of Chebyshev T-polynomial T_n(20). 2
1, 20, 799, 31940, 1276801, 51040100, 2040327199, 81562047860, 3260441587201, 130336101440180, 5210183616019999, 208277008539359780, 8325870157958371201, 332826529309795488260, 13304735302233861159199, 531856585560044650879700 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..624

Wikipedia, Chebyshev polynomials.

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (40, -1).

FORMULA

a(0) = 1, a(1) = 20 and a(n) = 40*a(n-1) - a(n-2) for n > 1.

From Colin Barker, Dec 30 2018: (Start)

G.f.: (1 - 20*x) / (1 - 40*x + x^2).

a(n) = ((20+sqrt(399))^(-n) * (1+(20+sqrt(399))^(2*n))) / 2.

(End)

MAPLE

seq(coeff(series((1-20*x)/(1-40*x+x^2), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Dec 31 2018

MATHEMATICA

CoefficientList[Series[(1 - 20 x)/(1 - 40 x + x^2), {x, 0, 15}], x] (* or *)

Array[ChebyshevT[#, 20] &, 16, 0] (* Michael De Vlieger, Jan 01 2019 *)

PROG

(PARI) {a(n) = polchebyshev(n, 1, 20)}

(PARI) Vec((1 - 20*x) / (1 - 40*x + x^2) + O(x^20)) \\ Colin Barker, Dec 30 2018

(GAP) a:=[1, 20];; for n in [3..20] do a[n]:=40*a[n-1]-a[n-2]; od; Print(a); # Muniru A Asiru, Dec 31 2018

CROSSREFS

Column 20 of A322836.

Cf. A041758.

Sequence in context: A012802 A049214 A002455 * A267671 A281777 A041763

Adjacent sequences:  A322887 A322888 A322889 * A322891 A322892 A322893

KEYWORD

nonn,easy

AUTHOR

Seiichi Manyama, Dec 29 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 08:50 EDT 2019. Contains 322306 sequences. (Running on oeis4.)