login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A322889 Chebyshev T-polynomials T_n(18). 2
1, 18, 647, 23274, 837217, 30116538, 1083358151, 38970776898, 1401864610177, 50428155189474, 1814011722210887, 65253993844402458, 2347329766676277601, 84438617606501591178, 3037442904067381004807, 109263505928819214581874 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Colin Barker, Table of n, a(n) for n = 0..600

Wikipedia, Chebyshev polynomials.

Index entries for sequences related to Chebyshev polynomials.

Index entries for linear recurrences with constant coefficients, signature (36, -1).

FORMULA

a(0) = 1, a(1) = 18 and a(n) = 36*a(n-1) - a(n-2) for n > 1.

From Colin Barker, Dec 30 2018: (Start)

G.f.: (1 - 18*x) / (1 - 36*x + x^2).

a(n) = ((18+sqrt(323))^(-n) * (1+(18+sqrt(323))^(2*n))) / 2.

(End)

MAPLE

seq(coeff(series((1-18*x)/(1-36*x+x^2), x, n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Dec 31 2018

MATHEMATICA

Array[ChebyshevT[#, 18] &, 16, 0] (* or *)

With[{k = 18}, CoefficientList[Series[(1 - k x)/(1 - 2 k x + x^2), {x, 0, 15}], x]] (* Michael De Vlieger, Jan 01 2019 *)

PROG

(PARI) {a(n) = polchebyshev(n, 1, 18)}

(PARI) Vec((1 - 18*x) / (1 - 36*x + x^2) + O(x^20)) \\ Colin Barker, Dec 30 2018

(GAP) a:=[1, 18];; for n in [3..20] do a[n]:=36*a[n-1]-a[n-2]; od; Print(a); # Muniru A Asiru, Dec 31 2018

(MAGMA) I:=[1, 18]; [n le 2 select I[n] else 36*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Jan 02 2019

CROSSREFS

Column 18 of A322836.

Sequence in context: A295369 A281559 A166767 * A003298 A049869 A041615

Adjacent sequences:  A322886 A322887 A322888 * A322890 A322891 A322892

KEYWORD

nonn,easy

AUTHOR

Seiichi Manyama, Dec 29 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 09:59 EDT 2019. Contains 322309 sequences. (Running on oeis4.)