login
A322857
a(1) = 1; a(n) = sum of exponential unitary divisors of n for n > 1.
7
1, 2, 3, 6, 5, 6, 7, 10, 12, 10, 11, 18, 13, 14, 15, 18, 17, 24, 19, 30, 21, 22, 23, 30, 30, 26, 30, 42, 29, 30, 31, 34, 33, 34, 35, 72, 37, 38, 39, 50, 41, 42, 43, 66, 60, 46, 47, 54, 56, 60, 51, 78, 53, 60, 55, 70, 57, 58, 59, 90, 61, 62, 84, 78, 65, 66, 67
OFFSET
1,2
COMMENTS
The exponential unitary (or e-unitary) divisors of n = Product p(i)^a(i) are all the numbers of the form Product p(i)^b(i) where b(i) is a unitary divisor of a(i).
LINKS
Nicusor Minculete and László Tóth, Exponential unitary divisors, Annales Univ. Sci. Budapest., Sect. Comp., Vol. 35 (2011), pp. 205-216.
FORMULA
Multiplicative with a(p^e) = Sum_{d|e, gcd(d, e/d)==1} p^d.
MATHEMATICA
f[p_, e_] := DivisorSum[e, p^# &, GCD[#, e/#]==1 &]; eusigma[n_] := Times @@ f @@@ FactorInteger[n]; Array[eusigma, 100]
PROG
(PARI) ff(p, e) = sumdiv(e, d, if (gcd(d, e/d)==1, p^d));
a(n) = my(f=factor(n)); for (k=1, #f~, f[k, 1] = ff(f[k, 1], f[k, 2]); f[k, 2] = 1); factorback(f); \\ Michel Marcus, Dec 29 2018
CROSSREFS
Cf. A361255, A051377, A077610, A278908 (number of exponential unitary divisors).
Sequence in context: A175067 A361174 A323309 * A361175 A051377 A369319
KEYWORD
nonn,mult
AUTHOR
Amiram Eldar, Dec 29 2018
STATUS
approved