login
A322793
Proper powers of primorial numbers.
4
4, 8, 16, 32, 36, 64, 128, 216, 256, 512, 900, 1024, 1296, 2048, 4096, 7776, 8192, 16384, 27000, 32768, 44100, 46656, 65536, 131072, 262144, 279936, 524288, 810000, 1048576, 1679616, 2097152, 4194304, 5336100, 8388608, 9261000
OFFSET
1,1
COMMENTS
A primorial number is a product of the first n primes, for some n.
Also Heinz numbers of non-strict uniform integer partitions whose union is an initial interval of positive integers. An integer partition is uniform if all parts appear with the same multiplicity. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
LINKS
FORMULA
Sum_{n>=1} 1/a(n) = Sum_{k>=1} 1/(A002110(k)*(A002110(k)-1)) = 0.53450573145072369022... . - Amiram Eldar, Mar 10 2024
EXAMPLE
The sequence of all non-strict uniform integer partitions whose Heinz numbers belong to the sequence begins: (11), (111), (1111), (11111), (2211), (111111), (1111111), (222111), (11111111), (111111111), (332211), (1111111111), (22221111).
MATHEMATICA
unintpropQ[n_]:=And[SameQ@@Last/@FactorInteger[n], FactorInteger[n][[1, 2]]>1, Length[FactorInteger[n]]==PrimePi[FactorInteger[n][[-1, 1]]]];
Select[Range[10000], unintpropQ]
(* Second program: *)
nn = 2^24; k = 1; P = 2; Union@ Reap[While[j = 2; While[P^j < nn, Sow[P^j]; j++]; j > 2, k++; P *= Prime[k]]][[-1, 1]] (* Michael De Vlieger, Oct 04 2023 *)
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 26 2018
STATUS
approved