|
|
A322776
|
|
Scan first k digits of Pi after decimal point, for k = 1,2,3,..., record all distinct numbers in the order in which they appear.
|
|
2
|
|
|
1, 14, 4, 141, 41, 1415, 415, 15, 5, 14159, 4159, 159, 59, 9, 141592, 41592, 1592, 592, 92, 2, 1415926, 415926, 15926, 5926, 926, 26, 6, 14159265, 4159265, 159265, 59265, 9265, 265, 65, 141592653, 41592653, 1592653, 592653, 92653, 2653, 653, 53, 3, 1415926535
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Skip any "numbers" that begin with 0, except 0 itself.
Presumably this is a permutation of the nonnegative numbers.
All the terms of A039916 appear in order in this sequence. - Rémy Sigrist, Jan 03 2019
|
|
LINKS
|
Rémy Sigrist, Table of n, a(n) for n = 1..10000
|
|
PROG
|
(PARI) pid=Pi-3; s=Set(); for (k=1, 9, pid*=10; my (f=floor(pid)); forstep (w=k, 1, -1, v=f % (10^w); if (!setsearch(s, v), print1 (v ",
"); s=setunion(s, Set(v))))) \\ Rémy Sigrist, Jan 03 2019
|
|
CROSSREFS
|
Inspired by A323036.
Cf. A039916, A322777, A154883.
Sequence in context: A018813 A070648 A040188 * A040186 A124600 A340715
Adjacent sequences: A322773 A322774 A322775 * A322777 A322778 A322779
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
N. J. A. Sloane, Jan 03 2019
|
|
EXTENSIONS
|
More terms from Rémy Sigrist, Jan 03 2019
|
|
STATUS
|
approved
|
|
|
|